Is it Worth it?
Assessing How the Medial Prefrontal Cortex Processes Risky Actions

The Problem
Persons with addiction and anxiety disorders have trouble changing behavior in response to the risk of a negative outcome.

An Example
Getting something you want also carries the risk of something bad happening (i.e. a negative outcome).

You need to decide at what risk something isn’t worth it anymore. For someone with addiction, making the optimal decision may be difficult.

Rationale
Understanding how brain activity changes with risk taking behavior may identify neural signatures and treatment targets to improve mental health disorders like addiction and anxiety.

Methods
Train animals in a task where working for a food reward carries an increasing risk of a footshock.

Record Neural Calcium Activity in the medial prefrontal cortex (mPFC) using Fiber Photometry as animals perform the task.

Results
Rats Decrease Reward Seeking as Risk increases
Rats Show Increased Anxiety as Risk increases

Learning of Punishment Risk Takes Several Sessions

Risky Action Encoding in the mPFC Changes As Subjects Learn Risk

mPFC Encodes Negative Outcome (i.e. shock)

Conclusions and Directions
Rats show sex differences in punishment sensitivity that mirrors the risk-taking patterns seen in humans.

The prefrontal cortex may serve a crucial role to track punishment exposure and adapt behavior to learning the risk of punishment.

Future work in different brain regions will yield insight into how brain processes may become maladaptive in mental health disorders.

Images are used under the creative commons license. The authors have no conflict of interest to report. This work was funded by the NIH (NIH F31 and T32 and an award from the ARCS foundation).