Private Set Intersection

Peter Rindal, Mike Rosulek
Oregon State University
--
Hao Chen, Kim Laine
Microsoft Research

ABSTRACT

Private set intersection (PSI) allows two parties (computers), who each hold a set of items \(X, Y\), to compute the intersection of those sets without revealing anything about other items. Recent advances in PSI have significantly improved its performance, making PSI a practical alternative to insecure methods for computing intersections.

OBJECTIVES

- Learn which items are common to both parties
- Hide items unique to one party
- Efficient to run on a laptop or cellphone
 - Computation
 - Communication
- Security:
 - Other party cannot learn any additional information
 - Cheating behavior (hacking) does not help.

APPLICATIONS

Contact Discovery

![WhatsApp](contact_discovery.png)

Voter Registration

![State of Oregon](voter_registration.png)

METHODS

Comparing two items: If Alice has \(x\) and Bob has \(y\), we need to check if
\[x = y\]
without revealing \(x\) or \(y\). First Alice picks a secret encoding key \(k\).

\[k \rightarrow E \rightarrow \begin{cases} x & \text{if true} \\ y & \text{if false} \end{cases} \leftarrow D \rightarrow \begin{cases} x & \text{if true} \\ y & \text{if false} \end{cases} \rightarrow \rightarrow \]

The encoding of \(x\) must reveal nothing about \(x\).

Comparing Sets \(X, Y\): When sets are of equal size, \(n=|X|=|Y|\), we desire the work and communication between parties to be proportional to \(n\).

- **Method 1**: Compare all pairs will result in \(n^2\) comparisons.
 - In practice we may have \(n=1,000,000\)
 - This would result in 1 trillion comparison!
- **Method 2**: Use a hash table to reduce comparison.

\[h(X) = [x_1, x_2, \ldots, x_n] \text{ and } h(Y) = [y_1, y_2, \ldots, y_n] \]

Compare each bin. Overall, \(n\log(n)\) comparison need to be made. Can be further reduced to \(\log(n)\) comparisons.

RESULTS

Balanced Set sizes: Rindal & Rosulek (RR17a,RR17b) improved on the state-of-the-art (DKT10) running time by 40x and later improved it further by 450x. 12 seconds to compare two sets of 1 million items.

Unbalanced set sizes: In many cases, one set is much larger than the other, e.g. Contact Discovery. Here Chen, Laine & Rindal (CLR17) improved the running time by 40x and communication by 25x. Requiring 3 seconds and 20MB to compare 5000 items with 16 million items.

CONCLUSIONS

Recent advances in private set intersection has resulted in very efficient techniques for comparing sets. Combining this with a wide variety of applications ranging from secure messaging apps, voter registration, ad revenue tracking, and many more, it is expected that this technology will soon start impacting millions of people.