Methods for Analyzing Resistances of Directed Graphs

Martijn Oostrom

Department of Mathematics, Oregon State University

Abstract

Resistance between two nodes is a topic that appears in sever. Heas of science, such as physics, computer science and between various vertices of directed graphs, with an emphasis on graphs that are balanced. One approach is using the Moore-Penrose inverse of the matrix, which enables us to take a pseudo-inverse of a matrix that in actuality has no inverse due to it being the Laplacian
of a graph. The other approach ties in with ideas from physics such as circuits that are in parallel or series, and builds a way of calculating resistances that is consistent with those methods. We also examine why various requirements are needed, and where conclusions that were drawn are no longer satisfied by dropping the
assumptions. We finish up by discussing how this work could be expanded on, and how it can be connected to aspects of biolog.

Background

Our main goal for this analysis is to find a way of associating istances to nodes in a directed graph. Creating some kind of eelatively to simple, but oftentimes these rudimentary systems don't scale up well, either due to cases where the preexisting method doesn't know how to handle the new setup, or the methods are computationally intense, such as by requiring the entire setup to be done if one small change is made.
mula is a metric or not. A metric is a formula $d(x, y)$ that inputs nodes x and y, outputs a distance (here, distances will be interpreted as resistances), such that all 4 of the following properties hold

- $d(x, y) \geq 0$
$d(x, y)=0$ if and only if $x=y, ~$
$d(x, y)=d(y, x)$
- $d(x, y)+d(y, z) \leq d(x, z)$ (the triangle inequality)

A graph is comprised of edges, with each edge connecting two vertices. Directed graphs add directions to each edge, so that they start at one vertex and end at another. Balanced directed graphs are grap in which for all vertices, the number of edges end
equals the number of edges starting at the vertex.

Both of the methods rely on the Laplacian matrix of a graph. This matrix is defined by:

- $L_{i i}=$ Number of edges that start at vertex
$L_{i j}(i \neq j)=$ The negative of the number of edges that start at vertex
For example, the graph below has the Laplacian shown below

(D)

With how the Laplacian is defined, for each row, the elements add up to 0 , which means that there is no inverse. Many of the theorems involving square matrices assume that the inverse does exist, which we can't make use of here.

Discussion of Moore-Penrose Method
As we've seen, Laplacian matrices don't have inverses. However, there is a pseudo-inverse called the Moore-Penrose inverse for matrices that don't have an inverse, with the Moore-Penrose inverse being "close" to the inverse if it were to exist. Many of the properties that hold for inverses hold for Moore-Penrose inverses as
well. For example, for invertible matrices $A, A A^{-1}=I$, the identity matrix. As an immediate result, $A A^{-1} A=A$. This property still transfers over when dealing with Moore-Penrose inverses of matrices, so that $A A^{\dagger} A=A$, where A^{\dagger} denotes the Moore-Penrose inverse of A. To illustrate how this method works, let us consider the following graph, which is directed and balanced:

The graph above has an associated Laplacian matrix of
 decomposition of the matrix, we get
$L^{+}=\left[\begin{array}{cccccc}\frac{5}{9} & \frac{1}{18} & -\frac{1}{9} & -\frac{1}{9} & -\frac{1}{9} & -\frac{5}{18} \\ -\frac{5}{18} & \frac{2}{9} & \frac{1}{18} & \frac{1}{18} & \frac{1}{18} & -\frac{1}{9} \\ -\frac{4}{9} & \frac{1}{18} & \frac{8}{9} & -\frac{1}{9} & -\frac{1}{9} & -\frac{5}{18} \\ -\frac{7}{36} & -\frac{7}{36} & -\frac{13}{36} & \frac{23}{36} & \frac{5}{36} & -\frac{1}{36} \\ -\frac{1}{36} & -\frac{1}{36} & -\frac{7}{36} & -\frac{7}{36} & \frac{11}{36} & \frac{5}{36} \\ \frac{7}{18} & -\frac{1}{9} & -\frac{5}{18} & -\frac{5}{18} & -\frac{5}{18} & \frac{5}{9}\end{array}\right]$ As well examine further later, one way of defining the resistance outcomes are achieved, is to define the resistance shat some desired $\left[l_{i i}^{\dagger}+l_{i j}^{\dagger}-2 l_{i j}^{\dagger}\right]$, where $r_{i j}$ is the resistance from i to j. Civen our matrix L^{\dagger} this gives us a resist

Discussion of Moore-Penrose Method cont.
The Moore-Penrose inverse has some desired goals, many of set $i=j$ in with the definitions of a metric. First, in the $r_{i j}$ formula, if $w e$ of resistances in general, in that there should be no resistance to go anced rected graph is diagonally dominant wat restances n-negative.
etrics isn't to graph being directed, the symmetry property of metrics isn't met. Cenerally speaking, if there is a directed edge from A o B, the resistance from A to B will be less than that of B to A. The hat the graph is directed that the graph is directed. directed edge both directions between them, the resistance is 1 , as would be expected in this simple setup.

Discussion of Physics Method

Oftentimes the first time people are exposed to the ideas of resistance (and current) is in physics classes, and this method works by ensuring that resistances for systems in parallel or series give the same lues as the values typically used in physics.
in this method, the formula for the resistance matrix Ω is

$$
\Omega=\nabla \mid \phi)(\phi|+| \phi)(\phi \mid \nabla-2[Q /(\Delta-A)]
$$

the above formula, we have the following variable definitio
$\Delta-A$: Laplacian of the graph
(ϕ): Eigenvector of the 0 eigenvalue as a colum
(1 : Eigenvector of the 0 eigenvalue as a row
$\left.\left.Q=I-\frac{1}{(\phi \mid \phi)} \right\rvert\, \phi\right)(\phi \mid$
$\nabla=(i|Q /(\Delta-A)| i)$ on the main diagonal, and 0 elsewhere
We can explore how this formula can be applied to the following graph:

Applying the formula to the above graph, we get:

If one considers all of the edges to have the same resistance of 1 , hen the formulas that series/parallel circuits give are equal to the directed edge without the equivalent edge in the opposite direction then the resistance values given satisfy all of requirements of metric distances.

Conclusion
As with most spaces that have metrics associated with them there are various metrics that can be used for that space. Dependin resistances of graphs. The Moore-Penrose inverse is frequently used when dealing with matrix operations for matrices that have no inverse,
so if one already has the Moore-Penrose inverse already calculated. this so if one already has the Moore-Penrose inverse already calculated, this
approach could result in less additional coding time and storage, which can be useful when dealing with graphs with a large number of vertices. Using the physics method allows us to calculate resistances circuits with parallel or series circuits, including when there are multiple cycles in the graph, an area where introductory physics formulas tend to either fail at or require solving a recursive relation

Future Work

There are two main goals for what areas of this area of mathematics I want to explore further: the biological aspect and mathematical aspect.
For the biological part, graphs are oftentimes used when all elements of the domain can be classified into exactly one of a list of species/states (such as susceptible, infected and removed for disease with each other. One possible area that the resistances in particular can be used for is calculating how dependent other species are on a given species, and whether other species could survive the removal of a given species, or also see their population reduced to zero. has for the mathematical aspect, a lot of the exploration thus fa has been made with several assumptions, such as having a balanced
graph, and that all the edges had the same weight (set to 1). From this, graph, and that all the edges had the same weight (set to 1). From this,
the natural question arises of what happens when those assumptions are removed or replaced with other assumptions. This also allows us to expand our biological applications, since when modelling real-life stiuatid.

Acknowledgements and References
I would like to thank my advisor, Patrick De Leenheer, for being one of the people to introduce me to mathematical biology, and for h insight on these topics
Furthermore, I would like to thank the Oregon chapter of the ARCS foundation, both for their regular events and for helping me to no have to worry about financial situations as much.

$$
\begin{aligned}
& \text { References: } \\
& \text { Bapat. Ravind }
\end{aligned}
$$

1. Bapat, Ravindra. "Resistance matrices of balanced directed graphs of Mathematical Chemistry. 12. 81-95. 10.1007/BFO1164627.

ARCS

