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Abstract
Resistance between two nodes is a topic that appears in 

several areas of science, such as physics, computer science and 
math. Here, we studied two matrix approach to finding resistances 
between various vertices of directed graphs, with an emphasis on 
graphs that are balanced. One approach is using the Moore-Penrose 
inverse of the matrix, which enables us to take a pseudo-inverse of 
a matrix that in actuality has no inverse due to it being the Laplacian 
of a graph. The other approach ties in with ideas from physics such 
as circuits that are in parallel or series, and builds a way of 
calculating resistances that is consistent with those methods. We 
also examine why various requirements are needed, and where 
conclusions that were drawn are no longer satisfied by dropping the 
assumptions. We finish up by discussing how this work could be 
expanded on, and how it can be connected to aspects of biology.

Our main goal for this analysis is to find a way of associating 
resistances to nodes in a directed graph. Creating some kind of 
methods to assign numbers to various graphs that have few nodes is 
relatively simple, but oftentimes these rudimentary systems don’t scale 
up well, either due to cases where the preexisting method doesn’t
know how to handle the new setup, or the methods are 
computationally intense, such as by requiring the entire setup to be 
redone if one small change is made.

Occasionally, we’ll make references to whether a particular 
formula is a metric or not. A metric is a formula 𝑑(𝑥, 𝑦) that inputs 
nodes 𝑥 and 𝑦, outputs a distance (here, distances will be interpreted as 
resistances), such that all 4 of the following properties hold:
• 𝑑 𝑥, 𝑦 ≥ 0
• 𝑑 𝑥, 𝑦 = 0 if and only if 𝑥 = 𝑦
• 𝑑 𝑥, 𝑦 = 𝑑(𝑦, 𝑥)
• 𝑑 𝑥, 𝑦 + 𝑑 𝑦, 𝑧 ≤ 𝑑(𝑥, 𝑧) (the triangle inequality)

A graph is comprised of edges, with each edge connecting two 
vertices. Directed graphs add directions to each edge, so that they start 
at one vertex and end at another. Balanced directed graphs are graphs 
in which for all vertices, the number of edges ending at the vertex 
equals the number of edges starting at the vertex.

Both of the methods rely on the Laplacian matrix of a graph. This 
matrix is defined by:
• 𝐿𝑖𝑖 = Number of edges that start at vertex 𝑖
• 𝐿𝑖𝑗 𝑖 ≠ 𝑗 = The negative of the number of edges that start at vertex 

𝑖 and end at vertex 𝑗
For example, the graph below has the Laplacian shown below

𝐿 =

1 0 0 −1
−1 2 −1 0
0 0 1 −1
0 0 0 0

With how the Laplacian is defined, for each row, the elements
add up to 0, which means that there is no inverse. Many of the 
theorems involving square matrices assume that the inverse does exist, 
which we can’t make use of here.

As we’ve seen, Laplacian matrices don’t have inverses. 
However, there is a pseudo-inverse called the Moore-Penrose inverse 
for matrices that  don’t have an inverse, with the Moore-Penrose 
inverse being “close” to the inverse if it were to exist. Many of the 
properties that hold for inverses hold for Moore-Penrose inverses as 
well. For example, for invertible matrices 𝐴, 𝐴𝐴−1 = 𝐼, the identity 
matrix. As an immediate result, 𝐴𝐴−1𝐴 = 𝐴. This property still transfers 
over when dealing with Moore-Penrose inverses of matrices, so that 
𝐴𝐴†𝐴 = 𝐴, where 𝐴† denotes the Moore-Penrose inverse of A.

To illustrate how this method works, let us consider the 
following graph, which is directed and balanced:

The graph above has an associated Laplacian matrix of:

𝐿 =

1 −1 0 0 0 0
0 3 −1 −1 −1 0
0 −1 1 0 0 0
0 0 0 1 −1 0
0 −1 0 0 2 −1
−1 0 0 0 0 1

.

Applying the Moore-Penrose inverse via singular value 
decomposition of the matrix, we get:
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As we’ll examine further later, one way of defining the resistance 

given the Moore-Penrose inverse, in such a way that some desired 
outcomes are achieved, is to define the resistance matrix 𝑅 by 𝑟𝑖𝑗 =

[𝑙𝑖𝑖
† + 𝑙𝑗𝑗

† − 2𝑙𝑖𝑗
† ], where 𝑟𝑖𝑗 is the resistance from 𝑖 to 𝑗. Given our matrix 

𝐿†, this gives us a resistance matrix of:

𝑅 =
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The Moore-Penrose inverse has some desired goals, many of 
which tie in with the definitions of a metric. First, in the 𝑟𝑖𝑗 formula, if we 
set 𝑖 = 𝑗, we get that 𝑟𝑖𝑖 = 0, which is a desired goal of metrics, and also 
of resistances in general, in that there should be no resistance to go 
from a node to itself. Also, as the Moore-Penrose inverse of a balanced 
directed graph is diagonally dominant, we get that all resistances are 
non-negative.

Due to the graph being directed, the symmetry property of 
metrics isn’t met. Generally speaking, if there is a directed edge from A 
to B, the resistance from A to B will be less than that of B to A. The
triangle inequality is satisfied, but the validity relies on the assumption 
that the graph is directed.

Finally for the Moore-Penrose method, given two vertices and a 
directed edge both directions between them, the resistance is 1, as 
would be expected in this simple setup.

As with most spaces that have metrics associated with them,
there are various metrics that can be used for that space. Depending on 
what one desires from the metric, there are different metrics for 
resistances of graphs. The Moore-Penrose inverse is frequently used 
when dealing with matrix operations for matrices that have no inverse, 
so if one already has the Moore-Penrose inverse already calculated, this 
approach could result in less additional coding time and storage, which 
can be useful when dealing with graphs with a large number of vertices.

Using the physics method allows us to calculate resistances 
circuits with parallel or series circuits, including when there are multiple 
cycles in the graph, an area where introductory physics formulas tend 
to either fail at or require solving a recursive relation.
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Discussion of Physics Method

Oftentimes the first time people are exposed to the ideas of 
resistance (and current) is in physics classes, and this method works by 
ensuring that resistances for systems in parallel or series give the same 
values as the values typically used in physics.

In this method, the formula for the resistance matrix Ω is:
Ω = ∇|𝜙)(𝜙| + |𝜙)(𝜙|∇ − 2[𝑄/(Δ − 𝐴)]

In the above formula, we have the following variable definitions:
• Δ − 𝐴: Laplacian of the graph
• |𝜙): Eigenvector of the 0 eigenvalue as a column
• (𝜙|: Eigenvector of the 0 eigenvalue as a row

• 𝑄 = 𝐼 −
1

𝜙 𝜙
𝜙 (𝜙|

• ∇= (𝑖| 𝑄/(Δ − 𝐴)|i) on the main diagonal, and 0 elsewhere

We can explore how this formula can be applied to the 
following graph: 

Applying the formula to the above graph, we get:
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If one considers all of the edges to have the same resistance of 1, 
then the formulas that series/parallel circuits give are equal to the 
values in the matrix. Furthermore, if all edges are undirected (no 
directed edge without the equivalent edge in the opposite direction), 
then the resistance values given satisfy all of requirements of metric 
distances.

Future Work

There are two main goals for what areas of this area of 
mathematics I want to explore further: the biological aspect and the 
mathematical aspect.

For the biological part, graphs are oftentimes used when all
elements of the domain can be classified into exactly one of a list of
species/states (such as susceptible, infected and removed for disease 
spread), with the edge weights  representing how the nodes interact 
with each other. One possible area that the resistances in particular can 
be used for is calculating how dependent other species are on a given 
species, and whether other species could survive the removal of a 
given species, or also see their population reduced to zero.

As for the mathematical aspect, a lot of the exploration thus far 
has been made with several assumptions, such as having a balanced 
graph, and that all the edges had the same weight (set to 1). From this, 
the natural question arises of what happens when those assumptions 
are removed or replaced with other assumptions. This also allows us to 
expand our biological applications, since when modelling real-life 
situations, some of the assumptions that we made are unlikely to be 
valid.


