Factors impacting resin production: Quantifying potential bark beetle resistance in burned, harvested, and untreated ponderosa pine forest

Christal Johnson
Oregon State University

Background

- Ponderosa pine (Pinus ponderosa) produce resin as a defense mechanism to expel bark beetles and kill beetle larvae, which can overwhelm and kill trees.
- Research suggests that resin production may be impacted by a variety of factors, including past disturbances, tree growth rate, and tree diameter.
- Forest management to increase resin production, and thereby increase bark beetle resistance, is not well-understood or widely practiced.
- The Collaborative Forest Landscape Restoration Program provides an area in eastern Oregon where work is being done to restore forest conditions and promote forest health. This allows an opportunity to study resin production in different forest treatments and disturbance histories, and to potentially guide future management.

Methods

- Selected sites to represent timber harvested, low severity burned, moderate severity burned, high severity burned, and untreated forest sites, with treatment years 2006-2015.
- Selected trees to represent different diameter classes at each site, and set up resin collectors for 24 hours.
- Collected data on stand density, mortality, and competition levels.
- Created generalized additive models (GAMs) of resin production in mL/hr. GAMs are additive models that include smoothing terms to allow for non-linear responses to predictor variables. Resin production was log transformed to create equal variance for models.

Results

- Across all sites, resin production increases with tree diameter and breast height (DBH), but begins to level off for the largest trees.
- In burned and timber harvested sites, there was a seasonal component to resin production, with higher resin flow mid-summer.
- At untreated sites, the seasonal effect was not significant. Instead, resin production fluctuated with the amount of competition that a tree faced from other live trees.
- Treatment type, severity, and timing did not have significant impacts on resin production in these models.

Factors impacting resin production at Untreated sites

Factors impacting resin production at Burned and Harvested sites

Conclusions and Future Work

- Across all sites, resin production increases with tree diameter and breast height (DBH), but begins to level off for the largest trees.
- In burned and timber harvested sites, there was a seasonal component to resin production, with higher resin flow mid-summer.
- At untreated sites, the seasonal effect was not significant. Instead, resin production fluctuated with the amount of competition that a tree faced from other live trees.
- Treatment type, severity, and timing did not have significant impacts on resin production in these models.

Acknowledgements

This work was made possible by support from the ARCS Foundation Oregon Chapter, the Oregon State University College of Forestry, Department of Forest Engineering, Resources, and Management, and Graduate School, and a grant from the Explorer’s Club.