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Objectives and Methods:

What is the problem?

• Increasing CO2 emissions in the atmosphere is causing 

climate change and ocean acidification (OA).

• These OA conditions are more acidic and corrosive to the 

shells of calcifying organisms such as clams, oysters, etc.1

• Ocean alkalinity refers to the ocean’s capacity to buffer 

changes in acidity by neutralizing acids like CO2.

• On geological timescales, rock weathering and erosion 

transports dissolved alkaline substances to the ocean 

increasing its alkalinity.2

• However, these processes are too slow to keep up 

with current rates of CO2 emissions.

What is sediment buffering?

• A method to mitigate OA effects on calcifiers inhabiting 

intertidal sediments by rapidly enhancing ocean alkalinity 

via dissolving alkaline minerals3,4

• Estuarine sediments are rich in naturally occurring 

metabolic CO2, creating a system that helps dissolve the 

minerals far faster than any other parts of the ocean.

Idaho Flats in Yaquina Bay estuary near Newport, OR, USA
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• Inconsistent effects of sediment amendments were 

observed in Site A and B, whereas at Site C, calcite 

increased porewater alkalinity as expected (Figure 1).

• The standard deviation across deployments and plots 

were typically larger than measured amendment effects 

at Site A and B

• Site A’s amendments, on average, appeared no 

different from control.

• Average porewater alkalinity at Site B and C increased 

by ~10% across all plots due to amendments.

Why are we interested in this?

• Defining limitations and understanding the mechanisms of 

sediment buffering given the vastly different outcomes 

from past efforts within the scientific community.

Sediment CoresPorewater Peepers

Records porewater alkalinity during weekly or 

biweekly deployments

Collected from field plots to measure sediment carbonate 

and organic content, oxygen consumption rates, and 

permeability

What minerals do we use?

• Calcite, Dolomite, and 

crushed Pacific Oyster 

(Crassostrea gigas) Shell at 

8% and 16% w/w amounts

• 2 control treatments 

(disturbed and true control)

Amending the sediment:

Three sites in Idaho Flats, OR: 

• March–August 2022, Site A and B 

(24 0.25 m2 plots at each site, all 

treatments replicated in three rows, 

amended in September 2021)

• April–June 2023, Site C (four 1 m2

plots, deeper in estuary, calcite only, 

amended in April 2023) 
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Minerals are raked in the upper 2 cm of sediment
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Figure 3: Sediment particulate inorganic carbon 

(PIC) measured monthly across all treatments at 

Site C in 2023.

Figure 1: Mean sediment porewater 

alkalinity difference from control across all 

mineral treatments and sites.

Figure 4: Sediment oxygen consumption rates (Rvol) and 

particulate organic carbon (POC) measured monthly at Site C 

in 2023.

Figure 5: Sediment permeability measured across 

all sites for control treatments.
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Figure 2: Sediment particulate inorganic 

carbon (PIC) measured across all 

treatments one month after amendment at 

Site A and B in 2022. 
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Summary of Alkalinity Analyses:

• ≥ 50% of carbonate was lost at Site A and B after the first 

month of amendment (Figure 2).

• This brings attention to constraining factors that 

influence carbonate transport out of sites.

• A gradual loss of carbonate was observed over the 3-month 

experiment at Site C (Figure 3).

• At Site C, an initial decrease in sediment metabolism was 

measured in amended plots that eventually subsided within 

a month (Figure 4).

• Site C was ~60% lower in permeability than Site A, and 

~30% lower than Site B (Figure 5).

• Sediment permeability may play a key role in controlling 

whether porewater alkalinity is retained in amended 

sediments or largely flushed out via tidal drainage

Site-specific Findings:


