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Important processes to the modern global carbon cycle (Fig. 1): The Precambrian—Cambrian transition was an incredibly dynamic period of Earth history in terms of both « We hypothesize that dissolution of sulphate evaporite—by sea level rise
oceanic and biological evolution. The isotopic signature of carbon (8'3C) is often employed to better or erosion—could deliver sulphate to an oxidant-limited, methane-rich
understand this evolution, characterizing trends in both the global carbon cycle and ocean chemistry. Neoproterozoic ocean, driving large amplitude 5'3C excursions via an-

However, traditional carbon cycle dynamics have failed to fully explain variations in 8'3C documented in . . . ] .
this interval. Our research aims to tackle this problem, leading to a greater understanding of both the aerobic oxidation of methane (AOM) coupled to sulphate reduction (Fig. 4)

« Tectonic timescales (>10° yr)
* Plate tectonics

* Weathering (silicate, carbonate, organic carbon) Precambrian—Cambrian carbon cycle, as well as 13C records more generally. We have developed a _
 Volcanism ‘sulphate capacitor’ hypothesis for this period of Earth history, potentially explaining large magnitude  We developed a simplified steady-state box model for the Neoproterozoic
e Burial (carbonate, organic carbon) variations that are irreconcilable with traditional carbon cycle dynamics. Our work offers a new global carbon cycle to test this hypothesis (Fig_ 5; Table 1) and
eXplanation to the interval of greateSt @ Varlablllty In Earth hiStOry, while also intrOdUCing d hnew demonstrate that the dissolution Of an enormous sulphate evaporite mass
« Orbital (104-10° yr) and millennial timescales (10>—104 yr) EEfOel @eID PEUTOEIE FSEnEs. can drive a -12%, model 5'3C excursion (Fig. 6)

* Ocean circulation This project closely relates to the rest of my dissertation research, which aims to apply a new numerical

* Biosphere correlation algorithm to important Precambrian—Cambrian &'3C records. | am also working to develop a
e Climate model to better understand smaller, local-scale variations due to depositional histories in 8'3C records.
Ultimately, | aim to combine these two numerical algorithms to improve &'3C correlations and
. Anthropogenic timescale (since industrial revolution) interpretations. As a test, | will apply both algorithms to data | collected in Death Valley (CA) to aid in

interpretation. In sum, this research will lead to a deeper understanding of the fundamental controls,
fidelity, and heterogeneity in Precambrian—Cambrian &'3C sequences.

* Fossil fuel burning
 Land use change

Figure 4 (above). Conceptual visualization of the evaporate dissolution mechanism. During sea level rise or erosion
P b ° D ° exposed sulphate evaporite is dissolved and delivered to a sulphidic ocean, where it oxidizes free methane in the water column
recam rlan yn amlCS via AOM, adding isotopically light carbon to the DIC reservoir and driving a negative 6'3C excursion.
* Neoproterozoic (1000-541 Ma) carbonate rocks host a succession of globally r
g~ synchronous, large amplitude negative excursions (< -5%o) in 8'3C (Fig. 3) we————""—"> —
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