

Oregon State University College of Earth, Ocean, and Atmospheric Sciences

Global Carbon Cycle

- Fossil fuel burning

 $12_{C_{std}}$

isotopes. Adopted from Press et al. (2004)

THE SULPHATE CAPACITOR HYPOTHESIS FOR CARBON CYCLE DYANMICS AT THE DAWN OF LIFE

Cedric J. Hagen¹, Jessica R. Creveling¹, Alan C. Mix¹

¹College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR 97330

My Research

deposits referred to in the text (Turner and Bekker, 2016). Geochronologic tie points shown in black: ¥ (Halverson et al., 2007); § (Strauss et al., 2014), * (Rooney et al., 2015); ^ (Macdonald et al., 2013); # (Bowring et al., 2007)

Sulphate Capacitor Hypothesis

- can drive a -12‰ model δ^{13} C excursion (Fig. 6)

Flux	Equation
Photosynthesis (F _P)	$k_p * M_1$
Remineralization (F _R)	$k_r * M_2$
Silicate weathering (F _{WS})	$f_A f_{ER}^{0.5} [1 + RUN * (T - T_0)]^{0.65} * \exp[ACT(T - T_0)]^{0.65}$
Carbonate weathering (F _{WC})	$f_A f_{ER}^{0.2} [1 + 0.087(T - T_0)] [M_3 (M_{3,0})]$
Organic carbon weathering (F _{WG})	$f_A f_D f_R k_{org} M_{org}$
Degassing (F _V)	9*10 ¹²
Carbonate burial (F_{BC})	$(1-f_B)*(F_{WS}+F_{WC}+F_{WC})$
Organic carbon burial (F _{BG})	$f_B * (F_{WS} + F_{WC} + F_{WG} +$
Sulphate flux (F _{AOM})	$(EM_R * SP) * EDR$
Oceanic DIC reservoir (M ₁)	$\frac{d(M_1)}{dt} = F_{WS} + F_{WC} + F_{WG} + F_V + F_R +$
Oceanic DOC reservoir (M ₂)	$\frac{d(M_2)}{dt} = F_P - F_R - F_{BO}$

We hypothesize that dissolution of sulphate evaporite—by sea level rise or erosion—could deliver sulphate to an oxidant-limited, methane-rich Neoproterozoic ocean, driving large amplitude δ^{13} C excursions via anaerobic oxidation of methane (AOM) coupled to sulphate reduction (Fig. 4)

We developed a simplified steady-state box model for the Neoproterozoic global carbon cycle to test this hypothesis (Fig. 5; Table 1) and demonstrate that the dissolution of an enormous sulphate evaporite mass