Utilizing the zebrafish xenograft model to evaluate anticancer drug efficacy Overcoming therapeutic resistance with Bcl-2 functional converters. Daniel Elson¹, Martin Pearce², John Gamble³, Yuriyah Reed Harris³, Robert Tanguay¹, Siva K. Kolluri^{1,2} (1) Environmental & Molecular Toxicology Department, Oregon State University (2) Molecular and Cellular Biology Program, Oregon State University (3) Biophysics and Biochemistry Department, Oregon State University

Background

- The zebrafish xenograft model is a powerful tool for assessing tumorigenic potential and drug efficacy.
- Model provides an *in-vivo*, high-throughput, low-cost platform for drug-screening and toxicity assessment.
- Provides a more robust, and representative model of cancerdrug response than cell culture.
- We leverage this model for evaluating anti-cancer action of **Bcl-2 functional converter (BFC) compounds.**
- **Bcl-2** is upregulated in therapy-resistant cancers as a mechanism of acquired resistance.
- BFCs convert Bcl-2 from a pro-survival protein to a proapoptotic conformation, exposing the BH3-death domain.
- Palbociclib (Pd) is a recently approved (2015) clinical drug currently used for ER-positive/HER2-negative breast cancer treatment. Pd is a CDK4/6 inhibitor, preventing cell-cycle progression.
- Pd is initially effective, but acquired therapy-resistance still observed in the clinic.

Urgent need still exists for targeting resistant cancers.

Methods

Zebrafish Xenograft Experiments: Fish were acquired from Sinhuber Aquatic Research Laboratory and maintained in (.0003%) phenylthiourea in E3 media following 24 hpf to prevent melanization. Pd-Resistant MCF7 cells were previously generated by continuous culture in drug for 6-8 weeks with an increasing concentration regiment (.001-1 µM). The day of injection, MCF7 cells were stained with fluorescent CM-Dil and injected into the yolk sac of 48 hpf fish by air-driven micro-pressure injector via a borosilicate glass needle. Cell suspension was 1 x 10⁷ cells/mL, and approximately 200 cells were used per fish.

Fish were imaged 1 day and 4 days post-injection. For imaging, fish were anesthetized by 0.2 mg/mL Tricaine and embedded in 0.8% low melting point agarose in a 96-well plate. Imaging was performed with the High-content microscope, with Zstacks captured on a 10X objective.

Cancer growth was analyzed using Fiji software, by making a maximum projection image of the z-stack and applying a median filter. Area was calculated by creating a binary mask from thresholds with the Otsu algorithm and calculating total area of resulting segmented objects.

Results

D) B18 suppresses tumor growth

D) <u>B18 suppresses therapy-resistant xenografts</u>: Tumor area was quantified 1 day and 4 days post-injection with Pdresistant MCF-7 cells. Bars represent the average log-base 2 fold-change between day 1 and 4. (n=55, n=65 for Veh./Treat) Error bars are SEM. (p=.0003 Student's Unpaired T-test).

Conclusions and Future Directions

Bcl-2 represents a logical molecular target for overcoming acquired resistance to therapy and is upregulated in numerous cancers, including ER-positive breast cancer.

Bcl-2 functional conversion by B18 is capable of suppressing Pd-resistant MCF7 cells in the zebrafish xenograft model, and showed no signs of overt toxicity to fish.

BFCs have further shown efficacy in breast cancer xenografts resistant to other therapeutics such as paclitaxel (data not shown here).

Future directions include:

Evaluating B18 activity in xenografts with parental MCF7 to demonstrate differential sensitivity in this model.

Demonstrating Bcl-2 functional conversion as mechanism of suppression by staining for BH3 domain exposure in sectioned zebrafish.