Kinetic Isotope Effect Suggests Mechanistic Differences in Facilitated Proton Transfer at
the Interface Between Two Immiscible Electrolyte Solutions (ITIES)
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Low KIE observed for surfactant-like ionophore

lon transfer mechanisms at the ITIES are hard
& to study

Future directions
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* Understanding mechanisms of proton transfer at interfaces is beneficial for
energy storage and electrocatalysis
Our method of determining the KIE of facilitated proton transfer at the
ITIES is agnostic of both A¢®’ and «, both of which are challenging to
know apriori for this reaction
Need to repeat experiment on a variety of ionophores to test which
properties influence the KIE measured in this way
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